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[ Introduction and Motivation

% Changepoint (CP) detection: find changes in the underlying mechanism
of the observed sequential data.
% CP detection is usually formulated as the problem of minimizing the

segmentation cost where Dynamic Programming (DP) is commonly used.

*» There are several CP detection methods. However, less attention has
been paid to quantify the reliability of the detected CPs.
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* A and E are falsely detected CPs
= Results from CP detection algorithms are unreliable
= Harmful for high-stake decision making such as medical diagnosis

% We propose OptSeg-SI method to provide valid p-value, which is used
as a criterion to quantify the reliability of the detected CPs, based on the
concept of Selective Inference (SlI).
= | arge p-value indicates false detection (A and E) and small p-value

indicates true detection (B, C, D and F)
= OptSeg-Sl can identify both false and true positive detections

[ Proposed Method - Schematic illustration

[ Concept of Selective Inference (Sl) j

Conditional Data Space X = {z | A(x) = A(x°")}
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Conditional inference: Pr(T(x) | &/ (x) = o/ (x°™)), where T(x) is the test statistic.

[ Problem Setting ]

* We consider the following statistical test
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where /i is population mean.

% The conditional p-value (selective p-value) is defined as

=Py (1A] 2 [A%] | 2)

P selective

. A° s is the difference in sample mean between the left segment and right
segment in the observed sequence

A is the mean difference in any random sequence
- X is the conditional data space defined as

X = {x : {left,right} <« DP algorithm </(x)}

% In other words, 2 is the data space whose data has the same detected CP
as the observed sequence.

% The selective p-value is valid since

IP’HO(pselective <a)=a, Vae]l0,1l].

However, characterization of the conditional data space X is challenging
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Proposed Method
>

Data space RV Conditional data space
X = {w e RY | A(x) = A(:I:Obs),q(a:) = q(mObs)}

% Step 1: Obtain CP results from the observed data x°

% Step 2: By restricting data on the line, we perform DP on parametrized data

and identify the sub-space whose data has the same CP results as x°°

Nagoya

ﬁ ,-o‘:g.é; &".
Institute of - 2 PROCESNG Syt
¥ Technology ® RI I’l: N s,

[ Proposed Method - Details ]

< We first restrict the data to the line by using a scalar parameter z € R
x(z) =a+ bz,

where a and b have specific forms.

< The conditional data space X is then re-written as
XL ={xzx)=a+bz|z€ £},
where Z = {z € R : {left, right} « DP algorithm &/(x(2))}.

—> The remaining task is to identify truncation region Z

** We propose a parametric DP
approach to compute CP results of

x(z)forallze R
% The region # is then the union of

Loss

intervals of z on which we obtain
the same CP results as the
observed data

[ Experimental Results j
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